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Abstract: The efficiency of catalytic cycles is measured by their turnover frequency (TOF). The degree of
TOF control determines which states contribute most to the rate of the cycle, and thus indicates the steps
that have the highest impact on the cycle. A kinetic model developed by Christiansen (Christiansen, J. A.
Adv. Catal. 1953, 5, 311) for catalytic cycles is implemented here in a form that utilizes state energies.
This enables one to assess the efficiency of quantum mechanically computed catalytic cycles like the
palladium-catalyzed cross-coupling and Heck reactions, to test alternative hypotheses, and to make some
predictions. This implementation can also account for effects such as Sabatier's volcano curve for
heterogeneous catalysis. The model leads to a dependence of the TOF for any cycle on the “corrected”
energy span quantity, 0 E, whose precise expression depends on the location of the summit and trough of
the cycle in the step sequence of the cycle. Thus, knowing the highest energy transition state, the most
abundant reaction intermediate, and the reaction energy enables one to make quick predictions about
relative efficiency of cycles. At the same time, the degree of TOF control determines which states contribute
most to the rate of reaction, and thus indicates the values to be included in the calculation of the energetic
span and the steps that may be tinkered with to improve the cycle.

Introduction Scheme 1 . A Schematic Catalytic Cycle with an Energy Difference
of AG (the Reaction Energy of One Turnover)?

Catalytic cycles (Scheme 1) are ubiquitous in chemistry and Product ¢,  Reactant

biology; most enzymes operate by means of catalytic cycles, c
_ N

and efficient catalysts are those that lead to a large turnover
frequency (TOF) of the cycle. How one can conceptualize an Cnat C
efficient catalytic cycle is the main concern of the present \
contribution that seeks to combine the insights of quantum .. e 4/
chemistry with a kinetic model that permits a detailed calculation ) ) 2 )
of relative efficiencies. aThe starting and final stages of the catalyst speciesaf@ G) are

. . essentially the same molecular state.
Modern quantum mechanical (QM) modeling of catalysts

provides us with detailed insight into the energy landscape of ¢icyjated today by use of the hybrid DFT/molecular mechanics
a given catalytic cycle. The quantitative aspects of these StUd'eS(DFT/MM) method? A useful addition to these sophisticated

hzve be?g gregtl;; |mp_rove|d k']n recent yealzs, rr;lostly due to I:hetreatments would be an integrating tool that can answer the key
advent of density functional theory (DFT) that allows generally question: How efficient is a gien catalytic cyclevis-a-vis an

reliable computations to be made for catalytic processeBven alternative one?Many QM treatments, as well as experimental

enzymatic cycles for species with thousands of atoms can beassessmen'[s of catalysts, tend to focus on the rate-determining
Step of the cycle, i.e., the one possessing the highest transition

(1) For atiny selection of papers focused on the perspectives of quantum studie

gf7 Zatagysgs, s‘;ee:, (?) FFer{srtl)king GJ.::'thrth._CKfllemk. Re. ZQrOQR 1_03 71h?; state (HETS), and try to find a catalyst that lowers the energy
A J. (cﬁem”.?n?rc'iompat_ Sa958 38 941048 (¢) Netrock MJ. Catal |~ Of that specific transition state. However, this approach, while

2003 216 73-88. (d) Gokhale, A. A.; Kandoi, S.; Greeley, J. P.;  very good for revealing trends under single turnover conditions,
Mavrikakis, M.; Dumesic, J. AChem. Eng. Sci2004 59, 4679-4691. R . R .
(e) Boudart, MCatal. Lett 200 65, 1-3. (f) Greeley, J.; Mavrikakis, M. misses an essential property of a catalyst, the TOF of its catalytic
Nat. Mater 2004 3, 810-815. (g) Sundermann, A.; Uzan, O.; Martin J. _
M. L. Chem. Eur. J.2001 7, 1703-1711 (h) Braga, A.; Morgon, N; CyCle' The TOF of a CyCle doe_s not depent_j 9” the rate
Ujaque, G.; Maseras, K. Am. Chem. So@005 127, 9298-9307. (i) determining step or any other single factor; it is rather an
Senn, H. M.; Ziegler, TOrganometallics2004 23, 2980. (j) Jacoby, M.
Chem. Eng. New2004 82 (Nov 29), 25-28.

(2) Kozuch, S.; Jutand, A.; Amatore, C.; Shaik,CBganometallic2005 24, (4) See, for example, the computed catalytic cycle of cytochrome P450: (a)
2319-2330. Loew, G. H.; Harris, D. LChem. Re. 200Q 100, 407-420. (b) Shaik, S.;

(3) Goossen, L. J.; Koley, D.; Hermann, H. L.; Thiel, W.Am. Chem. Soc Kumar, D.; de Visser, S. P.; Altun, A.; Thiel, WChem. Re. 2005 105,
2005 127, 11102-11114. 2279-2328.

10.1021/ja0559146 CCC: $33.50 © 2006 American Chemical Society J. AM. CHEM. SOC. 2006, 128, 3355—3365 = 3355
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(MARI).1112This leads to the following expressions for the rate,

-
-

3 FE Activation Energy of j r, and TOF of the cycle:
-y / \ | Egj= leading to maximum
c / 5 point in the cycl
w . [y a_ r — 2 _
FN] RN SE= TOF= —~Ae @M= A5 (3)
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HeredE is called the energetic span of the cytayhich by
reference to Figure 1 is the difference between the highest and
the lowest points (the highest is the HETS and the lowest is

Reaction Coordinate the MARI) of the catalytic cycle. Thus, according to this
Figure 1. Schematic representation of a catalytic cycle. A simplified a@pproximate treatment, the energetic span factor determines the
analysis shows that the factor that determines the efficiency of the cycle is frequency of the catalytic cycle, namehe turnaser frequency,
the energy spanE, rather than the activation enerdga, of the rate- TOF (cycles per time and catalyst concentration), of the cycle.
determining step. . e ..

Thus, even a simplified treatment shows that the efficiency of
integrated “rate function” of the entire cycle, the nano-machine the cycle is determined by more than just the rate-determining
that carries the catalysis. step, and generally, an efficient cycle requires a relatively flat

In this contribution, we develop a kinetic model that uses energy landscape.
computational QM data and enables one to answer key questions As shall be seen later, there are other essential requirements
associated with a catalytic cycle, such as the one presented irfor a large TOF. Thus, théE quantity is a suitable measure of
Scheme 1. The kinetic model is based on the steady-stateTOF only when the energetic span is much larger than the
approximatiorf. For convenience, the expressions are based on reaction energy of the cyclAG (the energy difference between
fixed standard concentrations of the noncatalyst species (reacthe starting and ending points of one turnover). But whereas
tant, product, and cofactors), but this convenience can be waivedAG is independent of the catalyst, the energies of the intermedi-
and the treatment can be modified to consider variable concen-ates and transition states are all catalyst-dependent, and this is
trations. The so-developed model is designed to attend QM the key for any kinetic influence of all these species on the
calculations to predict the TOF and its variation using the more precise expression of the TOF of the cycle, as presented
normally calculated quantities, barriers, and relative energies in this paper, which connects the TOF to the energy landscape
of intermediates, reactants, and products. The model is subsecomputed by QM methods.

AE;= respect to the MARI,
1 the minimum

Y  pointinthe cycle
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.
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quently applied here to the various versions of the catalytic cycle

for the palladium-catalyzed cross-coupling and Heck reactions

studied previously by a few groups;as well as to Sabatier’s
volcano effect in heterogeneous catal{/8iand its connection
to the Brgnsted coefficients and the BeHvans-Polanyi
principle?

What Makes for a Good Catalytic Cycle? A brief back-
ground that provides insight into the question has been given
by Amatore and Jutan¥f.Consider, in Figure 1, the velocity of

Theoretical and Computational Methods

The kinetic features of a simple cyclic reaction at steady state can
be calculated following the treatments of Christiartséand Camp-
bell*+15with some maodifications associated with the goal to link the
kinetic model to QM results. Christiansen provided an exact method
to calculate the TOF of aN-step catalytic cycle as in Scheme 1, while
Campbell’'s degree of rate control allows us to probe the effect of any
step on the kinetics of the cycle.

Calculation of the TOF. For a catalytic cycle (Scheme 1) at a

a catalytic process when steady-state kinetics is reached. In thissteady-state reginfe31¢all the changes in the concentration with time
case, one can use the Eyring equation or the Arrhenius rate laware zero, and therefore, the rates of all the processes must be the same

and express the rate)(of the cycle approximately as in eq
1

r~[Clk =[ClAe ™" (@)
where Gis the catalyst species of the rate-determining step and
Eg is the corresponding activation energy. A rough estimate
of the concentration of Ccan be achieved considering the
respective Boltzmann distribution,

[Cl~[Cle 5T @

where [G] is the total concentration of catalyst species ait]

is the energy of Qwith respect to the lowest-lying intermediate,
also known as the most abundant reaction intermediate

(5) Boudart, MKinetics of Chemical Processé2rentice-Hall Inc.: Englewood
Cliffs, NJ, 1968; pp 6771.

(6) Lin, B.; Liu, L.; Fu, Y.; Luo, Sh.; Chen, Q.; Guo, @rganometallics
2004 23, 2114-2123.

(7) Bligaard, T.; Ngrskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H;
Sehested, J1. Catal. 2004 224, 206-217.

(8) Jacobsen, C.; Dahl, S.; Clausen, B. S.; Bahn, S.; Logadottir, A.; Ngrskov,
J. K. J. Am. Chem. SoQ001, 123 8404-8405.

(9) Mayer, J. M.Acc. Chem. Red.998 31, 441.

(10) Amatore, C.; Jutand, Al. Organomet. Chenl999 576, 254-278.
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and equal to the global ratein eq 4:
r=KkGCy— kK ,C =kC; —k,C=...=kCy1 — k\Cy (4)

This set of linear equations can be written in a matrix form, which

for a cycle with four species is the following:

rp —rp 0 0 |[[C] 1
0 o, —r, 0 |J[C]]_|1 )
0 0 rg  —T_3||[Cq 1

_r74 0 0 r4 [C4] 1

Here,r; is an individual rate constant scaled by the global rate,ri.e.,
= k/r. As shown by Christianse.? the TOF (number of cycles per

(11)
(12)
(13)
(14)
(15)
(16)

Stolze, PProg. Surf. Sci200Q 65, 65—150.

Boudart, M.; Djga-Mariadassou, Gl. Catal.2003 216, 89-97.
Christiansen, J. AAdv. Catal. 1953 5, 311.

Campbell, C. TTop. Catal.1994 1, 353.

Campbell, C. TJ. Catal 2001 204, 520-524.

Experimentally, the induction time to reach a steady state may vary
substantially for each reaction. In the case of Pd cycles, it can be on the
order of an hour at 60C after~25 turnovers. This is dependent, e.g., on
the time required to reach the right catalyst starting point from the
precatalysts, plus the time required for stabilization of the concentration
of all the catalyst species. Kinetic measurements will result in erroneous
deduction of rate expressions and mechanisms if the induction time is not
reached (Buchwald, S. L1. Am. Chem. SoQ002 124, 14104-14114).
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Figure 2. A single turnover in a catalytic cycle, with indications of the

various energy quantities, and the energy changes of two species that affect

the degree of TOF control.
time unit and catalyst concentration) can be expressed as in eq 6a:

A

TOF =1 (6a)

where A is the difference between the products of the forward rate
constants and the reverse ones, defined in eq 6b.

ky— kK,

The quantityM is the sum of all the elements of the matkik eqs
6c and 6d; the first element is the product of rate constants kecim
kn and others are generated by the permutations of one df'thper
matrix element:

A=kk, .. Koy (6b)

M= Z Map (6¢)
a
koksko.ky Kok, ky kkoky.. Ky kkokoy ke
kokeokigk Kkl Kok ool Kk geek vy
M= : : . : (6d)
kalkZ“‘kN— (N l)kk kN—Z k—(zv l)k—Nk k kANk—(NAI)k—I"'k-(N—S)
kkoky. k. kkokyky,  Kykoks. k(,,_,, kenkokey. ks
For instance, for a cycle with four steps:
A = Kykokak, — K_1K_oK_gK_, (72)
Koksk, Koikak, KoK ok, Kok ok g5
M= Kokaky KookaKy KoK kg Kook gk , 7b
T Kkiky Koskoko K gk ako K ok ok (7b)
kikoKs K gkoky Ko K Ky Kk K 5

Conversion of Rate Constant to Energy Levels.While rate
constants K's) are thelingua franca of experimentalists, in QM

calculations all states are described in terms of their relative energies

in a reaction profile that is located during the computational procedure.

thek's in kg T/h units (G = k 'ih/ksT) to obtain the following expressions
for the rate constants:

— i T
e ©

-T

k=¢

Degree of Rate Control ¥). The influence of a certain step on
the rate of the reaction is a key question for any catalytic cycle. This
influence can be quantified on the basis of Campbell’s treatment, which
defined the degree of rate conto!® as follows:

Kar
r ok
Here, X, is the normalized variation of the global ratg ¢f the cycle

as a function of a change in an individual rate const@nall other

rate and equilibrium constants remain unaffected. A situation defined
by X.c; = 1 would mean that the global reaction rate totally depends
on stepi, while X.cj = 0 would mean that a change of the rate constant

of stepi will not affect at all the observed kinetics of the cycle.
Using the symbols in eq 9. the degree of rate control becomes

:E)Inr
aInk

Xrc,i = (10)

dlnr
aInk;

1 or

r aT;

X

Km*'%zi i

(11)

rci

Im'Tntw

where X.¢; is expressed in terms of the state energies (denotdg as
andT,).
Degree of TOF Control (Xror,). On the basis of eq 11, we can
define thedegree of TOF controbf a given state as follows:
_| 1 oTOF
Xror; = ‘TOF 9E, ‘ (12)

where E; is a dimensionless energy of a transition stafg ¢r an
intermediate If). Since these two types of states influence the TOF in
opposite directions, eq 12 uses an absolute magnitude sign, intended
to unify the scale of TOF control values. The only states that are
excluded from this equation are the reactants and products in the
reaction profile, since their energies, as such, are not associated with
the catalysis and the catalyst.

Calculation of Xtor, for a Catalytic Cycle. From eq 12, and eq 6
for TOF, the degree of TOF control for a certain transition statgth
energyT;, will be given by eq 13.

X _1 9TOF| _|M[oA 1 A3(1/|v|) _
TOFT, = |1TOF a1, | |A\aT, M aT,
1A 8(1/|V|)
‘ AT —+M— ‘ (13)

A connection between energies and rate constants is given by the EyringT© get an expression for the first term in eq 13, we can wiitas a

expression:
k' = E e—AGi*/ka = E dClli-)=GMkeT
I h h
8
k' = kT g AGHT — keT G- GMVksT
- h h

Here,G(li-1) is the free energy level of the intermediate preceding the
transition state; the latter state energyQ¢T;) (see Figure 2). For
convenience, we can use the energieswh units and employ the
respective symbolg andT; to denote dimensionless energies for the
intermediatesl(= G(l;)/k,T) and the transition statei(= G(T)/kyT)

at a specific temperature (for example, 1 koal Y/RT = 1.7

function of the state energies as follows:

A=Kkyr —Kk koo =€o g 2 —giide o (147)
0A lo-T1 1Tz | 11=T1 =T,
L - s+ e = A (14
T goig grhig (14b)

This leads to the following result for the first term in eq 13:

10A _

ADT, (15)

For the second term in eq 13, we recall thétis the sum of the

elements of the corresponding matkik(see eq 6c). We may therefore

dimensionless energy units at 298 K). In a similar fashion, we define write

J. AM. CHEM. SOC. = VOL. 128, NO. 10, 2006 3357
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aam) 1

aT, M4

oM,

(16)
aT,
where theM, terms are the elements of the mathk Each of the
derivatives under the summation symbol in eq 16 will be zero ifithe
state is not included, or Mgy if Mgy is a function ofT;. For instance,
for a three-step cycle, the first element of tdlematrix is

M, = kokg =€ 21 g T2 (17a)
and therefore we have
oM, ~o
aT,
(17b)
oMy, _ M, B
o, aT, | m

Let us label byMy, the sum of all elements that excludein the
matrix M; for example, for a two-step cycle we shall have

R k, k, e Tt g Tith
M= k, k., e Tt g Ttz

M =My, + My,=e 2 e T2

(17c)
_ — o T —Ti+
Mp, =M, +M;;=e * " +e 7

Using this definition, we obtain the following general relation:

aam)

aT, M4

1My 1 M,
~M-M)=1——
TI M

aT; (18)

M
These transformations lead to the final expression, shown in eq 19:

aamy| _ Mr,

aT, | M

1 0A
Xrorr, = ‘K B_TI 19)
Since the sum of aMy, terms is equal td1 (each element excludes
from M only oneT,;, in such a way that the sum of those terms that
form My, finally leads to the complete sum of all the elements), we get
the following closure relationship for the TOF control quantities in the
cycle”

(20)

My
XXTOFIi = ZV =1

As a consequence of this relationshipthe energy of the transition
state in the rate-determining step of the cycle is lowered, the
corresponding step will ha a smaller Xor 7 value, thus making all
the other steps more ralant, acquiring larger TOF controls.
The values oMy, can, in turn, be written as follows:

M = e e_zTi(éi'E)O (21a)
whereT; are the corresponding transition-state energ_i’eis a vector
with elements

P, =€ et (21b)

(17) This was presumed by Campb¥it> Other examples of this relation for
different systems can be found in the following: Corthright, R. D.; Dumesic,
J. A.Adv. Catal 2001, 46, 161—263. Baraski, A. Solid State lonicd999
117, 123-128.
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(N is the number of steps in the cycle), aBlis a vector extracted
from theith row of the correction matrixs(AG > 0):

11 .. 1)<g

~ 1 1 EAG -— G

6=, . LT (219
1 eAG eAG «— éN

This matrix shows that the transition states that are closer to the final
stage (highei index) have a higheKrorr; than would be expected
solely from the energy level;. This is so because, for a transition
state which is placed later in the sequence of the catalytic cycle, there
corresponds a vect@; with more coefficients & which act to upgrade
the corresponding TOF control quantity.

M is calculated as the sum of ti\y, (from eq 21),

M= e 2T[(G-P)T] (22)

whereT is a vector with elements exp{) ..., exp(R). Now it can be
shown that, when derivingrorr, @s a function of the state energies,
we obtain the following quadratic form:

M e’ (|3| : é.)
Xrorr, _ aﬁ B eT"(_I5|~ék)
aT,  aT, aT,
= eT‘(E)Féi) _ ( eTi(ﬁFéi) )2
WD .~ WD .
Ze PGy Ze PGy (23)
IXrorT, 5
5T, XrorT, ~ XroFT,
I
M; eTj(E)Féj)
] [ —
Xrorr, M _ Y PG
aT, AT, aT,
_ eTi(_FsFé‘j) eTi(ﬁ'éi) (24)
HXRGRE
aXTOF,Tj
T _XTOF,Ti Xrorr,

As such, the influenceXgorr, eq 23) of the transition state that
undergoes stabilization will be lowered following an S-shaped curve
(see Figure 5 later). At the same time, the other degrees of TOF control
for transition stateg (eq 24) will attain a mirror-image shape.

The calculation of the degree of TOF control of the intermediates
(Xrory; = M,/M) behaves in a symmetric fashion as follows:

My = &1 G By (252)

Py = e =T gl (25b)
L |

B (259

Thus, the correction matri§' scales the different steps in an inverse
fashion to the matr>xG in eq 21c, making the “early” intermediates
(with smalleri index) more relevant than the others. In this notation,
In is the product state and (that is not included explicitly ifM)) is
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the reactant state. The same closure relation that links the degrees of

TOF control for the various transition states applies to the suxy&H;
quantities for the intermediates in the cycle, for which the sum is
normalized to 1.

Calculation of TOF for a Catalytic Cycle—The Corrected
Energetic Span.Having M (eq 22), we just need to deriva as
follows:

A= e ST gli(ehe — 1) (26)
A _ -1
TOF={= &N 27)

whereG is the correction ‘matrix (eq 215)]5 the vector (expftln), ...,
exp(—Iy)), and the vectof is (exp{Ty), ..., exp{n)). Equation 27, a
direct consequence of Christiansen’s treatm&fdyms the basis for

the algorithm used here to calculate efficiencies of catalytic cycles.
From this expression we can see that the influence of the TOF of a

TOF~ (efliJer{fAG) + efIerTn{fAG})fl

32a
__ 1 o CIHTd-ACH _ 1 &E’ (322)
—b —b
l+e l+e
whereb is the difference of both exponential terms:
b= (Ij - T{+AG}) — (I,,— T{+AG}) (32b)

and the energetic span is the bigger of the two terms. The factor [1
exp(=b)]~*is smaller than 1 and will lower the TOF of the cycle. For
instance, if both exponential terms are equal (see an example in the
Applications section later), then the TOF becomes simply &&py/2,
and as such, the TOF of the cycle will be halved. Thus, for a given
OE’, the TOF will be lowered with the increase of the number of
combinations between intermediates and transition states having similar
status in the cycle (eq 30).

From the definition in eq 12 and eq 32, we then find that, when two

given transition state increases as the transition state’s energy increasefansition states have comparable importance in a cycle, the degree of

and as it lies closer to the product phase in the sequence of the cycle

TOF control will be

For the intermediates, the impact on the rate grows as their energy is

lowered and as the intermediate is more proximal to the reactants.
Derivation of the Corrected Energetic Span.To have a quicker

but still accurate estimate of the TOF addor;, we can usethe

corrected energetic spaf@E '). Mathematically, to calculatéE ' we

have to neglect all terms but one in the denominator of the expression

in eq 27 for the TOF calculation. This is usually a good approximation,

considering that a difference of only 3 kcal/mol in two exponential

terms creates a difference of 99% in their relative importance. In the

numerator of eq 27, we may neglect the 1, sintex 1. We finally

obtain the following®

o=

The above difference between the two expressions of the energetic spa
depends on the relative positions of the transition state and the
intermediaté® For example, consider a two-step cycle characterized
by the following matrices:

Te— if k> j

T~ |~ AG ifk=| AG > 0 (by defn) (28)

N 11
=11 G (29a)
T=("e" (29b)
T=("e? (29¢)
The TOF will be
AG G _
ToF=8 —1_ -1
(G 1)T gzt glitTe g g7 lztTe | g It T2+AG
e
~ o121 4 g iTTL | g 12Tz 4 g it T2HAG (30)

— (e*|2+T1*AG 4 e7I1+T17AG + eflerTzfAG + e*|1+T2)*l

Usually only the term with highest exponential value in eq 30, the one
that maximizesSE, cannot be neglected. Therefore, we have eq 31,
which approximates eq 30:

TOF~ g (IHTdAGH — 708! (31)
In a case when two terms in eq 30 become relevant, for example

with two transition states having higkrorr, (as it appears later in this
paper for the Pd cross-coupling reaction), the resultant TOF will be

1

S 33
1+e® (33)

XTOF,Ti =

A Summary—How To Calculate the TOF. Once the full cycle is
calculated by a QM method, one defines all &is and equilibrium
constant in energetic terms as defined above (eq 9). Strictly speaking,
free energies are required. However, when these are not available (or
are inaccurately determined by the QM method), one may cautiously
use energies or energies with ZPE corrections to obtain some insight
into the cycle. For accurate results, the TOF must be calculated from
eq 27 andXrorr; from eq 19. However, in most cases (and in the cases
studied later in this work) eq 27 can be rigorously replaced by the
simpler expression in eq 34, when two combinations of intermediates
and transition states are dominant, as appears on the exponential terms
r?f eq 30. Alternatively, eq 31 may be applied for those cases where
only one transition state and one intermediate are influential:

1 e
TOF= € 34a
1+e?® (342)
where
. Tk_lj ifk>j
OE _{Tk—lj—AG i k <j (34b)

Thus, as a rule of thumb, it is possible to reason about the TOF of
a cycle by just measuring (calculating) the energy span between the
MARI and the highest transition state if the latter appears in the cycle
after the intermediate, or by subtracting from the same energy span
the value ofAG (AG defined always as a positive quantity) whenever
the highest transition state appears before the intermediate (eq 34b,
Figure 3).

QM Methods. The kinetic scheme is applied here to a few cycles
computed previously by QM methods.

The cross-coupling reaction of an aryl halide with neutral and anionic
Pd catalyst was studied previouslysing the B3LYP functional and
the LACVP*+ basis set implemented in Jaguar #.2ll geometries
were optimized with Jaguar 4.2, while the ZPE corrections were
determined from Gaussian 98In the present study, we added to the
various species free energy terms and single-point solvation energies.
In the case of the cross-coupling of carboxylic anhydrides with

(18) The distinction in eq 28 is a consequence of tfeterms in the correction
matrix (and is also consistent with a change of the starting point to other
intermediates).

(19) Jaguar 4.2 Schralinger, Inc.: Portland, OR, 19922000.

(20) Frisch, M. J.; et al.Gaussian 98 Revision A.11.2; Gaussian, Inc.:
Pittsburgh, PA, 2001.
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(@) «k=j (b)  k>j Scheme 2 . Neutral (“Consensus”) and Anionic Mechanisms for
SE'=T.-I:- AG J SE'=T.-1 Cross-Coupling?
= Tk=lj= =Tk=ij
Tk . Tk L
"-t‘.”AG — 5E'-'1_“- Pd°
I-’ Y - Ar-Nu | Ar-X
0 REAS= 1y Y| S e
N IN N IN . L —n
el Reductive Oxidative
l; (MARI) l; (MARI) Elimination Addition
Figure 3. Corrected energetic spanl ') for calculating TOF when the L A L A
transition state with higherorr (Tx, the HETS) (a) comes before the N r N r
intermediate with higheskror, (I;, the MARI) and (b) comes after this /Pd\ /Pd\
intermediate. L Nu L X
Lig.and.
arylboronic acic® the authors used the BP86 DFT functional with the Substitution
6-31G* basis set for all atoms except for Pd, which was described by
the LANL2DZ basis set, implemented in Gaussian 98. The calculation X Nu
of the Heck reaction with Ni and Pdvas carried out using B3LYP (a) Neutral Mechanism
with the LANL2DZ//LANL2DZ(p) basis set (consisting of the LANL2DZ
basis set with an extra d polarization function for P, Cl, Br, and |, an
f function for Ni and Pd, and D95v(d) for H, C, and O). Ar-Nu L Ar-X
X Pd°Cr-

Applications cr L

Having established the connection between QM calculations peductive Oldative
and a basic kinetic model, we shall now use it to interrogate a
few catalytic cycles that were computed by QM methods and ,.""\ AT _,"-\ AT

. ; . 6 . o X Pd" o I

published recently in the literatufé:6 An additional application " Nu W N
is to a longstanding effect in heterogeneous catalysis. The basic
expressions that are needed for these applications are eqs 31 Ligand
34. Already at the outset, we have to emphasize that reliable Jubstitution Ar Nu-
TOF values can be obtainealy from accurate calculations of N Npatl or
free energies in a soént However, accurate free energy v
calculations in a solvent are not commonly available, and (b) Anionic Mechanism

therefore, in such cases, the efficiency of the computed cycle
may be calculated using the energy scale employed in the
calculations. Moreover, even when free energies are available,
it is still instructive to obtain an analysis of the effects of the
various energy components to the TOF, as is done in the first
example below. As such, the following applications serve the
purpose of projecting the insight of the model for the practicing
computational chemist.

Cross-Coupling of an Aryl Halide with Neutral and
Anionic Pd° Catalyst. The cross-coupling reactihin eq 35
is catalyzed by divalent Pacomplexes. In a recent papewe

2The anionic mechanism follows ref 2.

of 7—10 THF moleculeg? Similar tests that were carried out
on other species in the cyéfeshowed that anionic additive
remains as part of the structure also in a solvent. In addition,
the role of the anionic catalyst for X= acetate, in the reaction
with Ph—I, was discussed by Goossen ef&l.for gas-phase
and solution-phase conditions. The full catalytic cycles for the
two mechanisms in Scheme ®ere computed using RHas
ligand models, PRCI as reactant, and SHas nucleophile.
These cycles were compared also with the characteristic cycles
Ar—X 4+ Nu~ — Ar—Nu + X~ (35) produced by neutral chelated catqu;ts PCWEH-HZ_)nPHz) (r\
= 3, 6)2 It was argued that the anionic catalyst is superior to

studied two alternative catalytic cycles based on two different the neutral and bidentate catalysts, since the anionic additive
formulations of the catalyst. These two cycles are shown in lowers the energy of the HETS in the oxidative addition step
Scheme 2; one involves the neutral RJL = PR) catalyst, and raises the energy of the MARI. However, this argument
which appears in the consensus mechanism, and the othewas based othe uncorrected energy sparfi the cycle (eq 3),
involves an anionic PiX~ catalyst, proposed by Jutand and which, as we argued above, may not always be an accurate-
Amatore?! Experimentally, the R substituents of the phosphine measure of the TOF. Here, we apply the model discussed above.
are usually phenyl groups, Xis a halide anion, and Nuis a The cycle energy profiles obtained in this study are repre-
boronic acid, a Grignard reagent, or a hard nuclephile. sented in Figure 4, which is adapted from the original work in

The theoretical studies first established the existence of theref 2, where zero-point energy (ZPE) corrections were used.
anionic catalyst species for a variety of anions and phospine Table 1 collects the necessary data to apply the equations for
ligands (with PH, PPh, and P\§; V = vinyl).232223The anionic
complex was shown to be a genuine minimum also in solution, (22) Kozuch, S.: Shaik, S.; Jutand, A.; Amatore, Chem. Eur. J2004 10,
using a continuum THF as solvent, and with a discrete cluster ., 3072-3080.

(23) Goossen, L. J.; Koley, D.; Hermann, H. L.; Thiel, Wrganometallics
2005 24, 2398-2410.

(21) (a) Amatore, C.; Jutand, A.; Medeiros, M. J.; Mottier,J_.Electroanal. (24) Similar tests for the HETS of the anionic cycles( ¢°*in Figure 4) showed
Chem.1997, 422, 125-132. (b) Amatore, C.; Azzabi, M.; Jutand, A. that the Cf anion remains nestled at the back of the phosphine ligand.
Am. Chem. S0d.991 113 8375-8384. (c) Amatore, C.; Jutand, A.; Suarez, The survival of the MARI (in Figure 4) with a continuum THF model was
A. J. Am. Chem. S0d.993 115, 9531-9541. (d) Amatore, C.; Jutand, A. also tested, and the MARI was found to be a genuine minimum, with some
J. Organomet. Chenil999 576, 254-278. (d) Amatore, C.; Jutand, A. elongation of the average distance between thea&dd the phosphines
Acc. Chem. Re000Q 33, 314-321. (from 2.360 to 2.556 A).
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qguence of the decreased influence of this intermediate compared

to the other ones. Th¥rog; profile for this stage is S-shaped

like a titration profile, as described above in egs 23 and 24.
Let us turn to consider the influence of the transition states

in the cycle of the neutral catalyst in Figure 4a. Two states have
considerable influence: the oxidative additidr8(©¥) and the
reductive eliminationTShsRed), which have energetic spans that
differ by b = 0.6 (from eq 33,Xrort = 0.65 and 0.35,
respectively). If it is chemically possible to lower only one of
these two transition states, this will bring no great improvement
of the cycle kinetics, as the unmodified step will eclipse the

Cuci

-75-[=Pd(PHy); -Neutral- | = ™ ‘@L...L.}d' c putative enhancement due to the lowering of the other transition
—Pd(PH)C -Anionic-] — Mlsu™ % e (MARY) S state. Since the two steps have similar relationships to the MARI
Coa o (see eq 32), the TOF approximation based on the corrected
(b) CL}u:.'i energetic span will be given by eq 36,
Ts"’"ox© (—lyr T AG) oF
~ — (Thrg T Irsyox— =0. 3
25 | Cw TOF e e 0.65e (36)
Yc
0 Ru,n Woo¥ where it is scaled by a factor of 0.65.
25 'P""n@ Catalytic Cycles of the Catalysts with Bidentate Phosphine
Ligands. When the ligands of the catalysts are bidentate
50 phosphines, P-(CH,),-PR,, the smaller (Ch), linkers apply
[PaPHCHY PRy ot N a uniform stabilization on the whole reaction profile energies
75| == n=6 S"ZC:L 'CL/ @) in the catalytic cycle (see Figure 4b). For the linker witk=
—n=3 lsn,n 2 e, (MAR) - 6, the oxidative addition complex and the MARI have virtually

Figure 4. Full catalytic cycles for (a) anionic (PdCI~) and neutral (Pdk; the same energy levels as the corre_spondlng species in th? cycle
L = PHs) catalysts and (b) neutral catalysts with bidentate ligands{PH Of the neutral monodentate phospine-ligated complex (Figure
(CHz)nPH,) having six and three methylene links (energy values with ZPE  4a). It is therefore not surprising that the calculated relative TOF
corrections are given, dimensionless, at 298 K). Note that the reactants for¢, - n — g in Table 1 is 0.4. The degrees of TOF control have
the two cycles are placed together at zero energy, and consequently, the
relative energies of other species are different in the two cycles even whenthe same values as before; 1 for the MARI, and 0.71 and 0.29
the species are identical. A schematic anionic mechanism is shown in for the oxidative addition and the reductive elimination,
Scheme 2. Adapted from ref 2. respectively. We note that the differences between ¥OFor
0.4 are not significantunless of course these were based on

TOF and TOF control in the various putative cycles. The extremely accurate sodted free energy datavhich is usually
energies (corrected by ZPE) are expressed here in dimensionlesgot the case. Thus, the most one can say is that the cycles of
units at 298 K. In the present treatment, we consider also the ihe neutral PYPR;), and chelated F{R.P(CH,),PR] catalysts
conclusions based on free energies and solvation correctionshaye similar efficiencies, as calculated at the zero-point-corrected
Thus, this example may illustrate the capability of the model energy level in the gas phase.
to discern alternative hypotheses and to pinpoint deficiencies Tpe preceding conclusion is surprising in view of the usual
in a given computed cycle. conception that the bidentate-ligated®Romplexes constitute

Catalytic Cycle of the Neutral Catalyst with Monodentate superior catalysts, and the catalytic power improves with the
Phosphine Ligandsihe neutral mechanism (Figure 4a) involves  decrease of the length of the (@Hlinker. Thus, the effect of
concerted oxidative addition and reductive elimination. After the length of the linker on the oxidative addition has been studied
oxidative addition of Pr-Cl, the intermediatél undergoestwo  before?25In both studies, it was found that the smaller the chain,
consecutive steps of ligand substitution: the first involves the lower was the oxidative addition barrier, in line with pre-
displacement of the PHigand with the incoming nucleophile,  dictions of the valence bond state correlation diagram m@del.
HS™, leading toll |, and subsequently, upon re-entering of the This conclusion, however, concerned only the rate-determining
phosphine ligand, the Clis displaced. The so-generated step of the cycle and did not take into account the energy of
complex, Il 'ci in Figure 4a, is the MARF* From a kinetic  the MARI. Since the smaller the chain length is used, the more
viewpoint, we take this “consensus” cycle as standard and assignstable becomes the MARI, the two effects (barrier lowering and
it, in Table 1, a reference value of TOF 1; the other cycles ~ MARI stabilization) have opposite influences in the TOF, and
were estimated relative to this standard. therefore, the bidentate complexes have virtually identical TOFs,

Using the data in Table 1, the resulting degree of TOF control irrespective of the chain length (the relative TOF for the cycles
for the MARI of the neutral cycle (specidis in Figure 4) is 1, of the chelated complex with = 3'is 0.5 in Table 1).
as expected from the low energy of this intermediate species. In summary, the chelated catalysts do not improve the cycle
As shown in Figure 5, artificial elevation of the energy value kinetics. This is a consequence of the fact that the sum of the
of this MARI will cause an fexponenFiaI grgwth of the TOF up (25) Su, M.: Chu, Slnorg. Chem 1998 37, 3400-3406.
to the point where other intermediates in the cycle start to (26) (a) Shaik S.; Shurki AAngew. Chem., Int. EA999 38, 586-625; Angew.
become relevant as TOF controllers. In parallel, as the MARI ~ ¢hem:1999 111,616-657. (b) Pross A.; Shaik $icc. Chem. Red983

. 16, 363. (c) Shaik, S.; Hiberty, P. ®ev. Comput. Quantum Chera004
energy grows, the reaction rate reaches a plateau as a conse- 20, 1-100. (d) Shaik, S. SJ.’Am. Chem. Sod.981, 103 3692-3701.

J. AM. CHEM. SOC. = VOL. 128, NO. 10, 2006 3361



ARTICLES Kozuch and Shaik

Table 1. Key State Energies (corrected by ZPE, in dimensionless units) at 298 K, Degrees of TOF Control, Reaction Energies (AG),
Energetic Span Values (0E '), and Relative TOF Values

monodentate neutral bidentate
anionic
neutral anionic corrected n=3 n==6
AG=365¢ E Xror E Xror E Xror E Xror E Xror

intermediate I'g —74.9 1.00 —59.5 1.00 —59.5 1.00 —91.0 1.00 —75.6 1.00
transition states TSHO* 34.9 0.65 22.9 0.00 22.9 0.55 13.7 0.00 35.3 0.71

TSgpfRed —-2.2 0.35 13.2 1.00 —13.8 0.45 —16.6 1.00 2.1 0.29
OE'’ 73.3 72.7 45.9 74.4 74.4
relative TOP 1 2.8 6.7x 101 0.5 0.4

aWe use the generic symbAlG, as in the TOF equations, but actually this IA@ + ZPE) value. The quantity refers to the net process; HPh—Cl
— Ph—SH + CI~. P These values are relative to the TOF of the neutral catalyst, R}PH

W A .
O o8 25 e L‘P St L\ el paO
— I
% O 06 8 D |sn a2
g g 0.4 - 0 TSLSH CI TSsh Red L\Pdo
- O 4
D 02 25 ’" Tssu e
s Ll ' ) /-/
-75 -70 -65 -60
E (MARI) -50 1 sl ﬂ
Figure 5. Evolution of the turnover frequency (TOF) and the degree of P"-- Pd+
TOF control ) of the neutral mechanism as a function of arbitrary -75+ . SH sh | “Per
destabilization of the MARI. of b mO
e D
. . . . ¥
Xror for the intermediates is equal to the sum for the transition cl
==Pd(PH;), -Neutral-
states, and therefore the two effects mutually cancel one another. — Pd(PH.),CI" -Anionic-
Note that the TOF of the chelated catalysts is the same as that >

of the neutral P{PRs), complex, despite the fact that the  Figure 6. Revised energy profile plot (relative to Figure 4a) for the
oxidative addition step of the latter has a barrier that is 12 reductive elimination in the anionic and neutral cycles.

kcal/mol higher than the formeOnly under conditions of a
single turnover will the energy advantage of the barrier come
into play, as indeed was found experimentally.

Catalytic Cycles of Anionic PdComplexes in the Gas Phase.
Previously? it was argued that the anionic catalyst produces
the main advantage of the chelate complexes without their
drawback. As shown above in Figure 4a, when the reactant
approaches the tricoordinated anionic catalyst, the@®&d bond
is broken. However, the departing Chigrates to the site
between the phosphine ligandsy ) and is clamped by
Coulomb interactions with the positively charged hydrogen
substituents of the ligands (the same was shown to be the cas
for PPh ligands). This structural motif continues in the HETS,
TSk ci, and was shown to survive in a solvent motiiNestled
in the phosphine cage, the chloride exerts on the phosphines a
chainlike effect that produces a low-energy transition state for
the oxidative addition stef5:26When the nucleophile approaches
the catalyst, it displaces the chloride and assumes its position
in the phosphine cage (speciés ¢ to Il sy in Figure 4a). The
loss of Coulomb stabilization of the Chwith the phosphines
results in higher intermediates, relative to the onset of the
cycle,than in the neutral cycle, where no anion is present before
the nucleophile approaches.

For the catalytic cycle that appeared in the original paper
(and is reproduced here in Figure 4ahe anionic mechanism
has a TOF of only 2.8 relative to the standard (see Table 1) =
This surprisingly small advantage was due to the fact that, in
the treatment of the final stage of the catalytic cycle, we

neglected the effect of the Chnion (which was originally part
of the Ph-Cl substrate). Originally,without the kinetic model
to guide us, we assumed that once this &bion departed there
were no kinetically important steps. Only here, with the advent
of the kinetic model, could we appreciate that this neglect leads
to an underestimation of the influence of reductive elimination
to the TOF and its degree of TOF control. Recalculation of this
last step, as shown in Figure 6, reveals that the departing ClI
ion is nestled again in the Coulomb cage near the phosphines,
lowering the barrier for reductive elimination by the above-
é]llscussed chainlike effeg€>26This effect is precisely the same
as the one exerted on the oxidative addition by the original CI
in the Pd(PH).CI~ catalyst. With this step taken into account,
the resulting energetic spans taken from the oxidative addition

and the reductive elimination become almost isoenergetie (

0.2 between these two transition states, resulting in FAFE55

XPOE)). A calculation of6E " in the corrected cycle gives us
45.9, and is therefore 27.4 energy units lower than the span of
the cycle for the neutral catalyst (at 298 K, this is equivalent to
16.4 kcal/mol). The new TOF for the corrected anionic cycle,
given in Table 1, is 6.% 10! relative to the standard TOE
1 for the neutral catalyst! This result seems to support the
experimental data of Jutand and Amatore regarding the impor-
tance of the anionic catalyst for a working cyéfe?!

Comparison of the Catalytic Cycles of Neutral and Anionic
d® Catalysts Using Free Energies and gation Corrections.
The above discussion refers to gas-phase energies with ZPE
corrections, and the question that remains is: how would the
(27) Portnoy, M.; Ben-Daviv, Y.; Rousso, |.; Milstein, Drganometallics1994 inporporatiop of free energi_es and solvation correction_s affect

13, 3465-3479. this conclusion? The resulting parameters are shown in Table
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Table 2. Energy Parameters (Dimensionless) at 298 K and TOFs for the Catalytic Cycles of the Neutral and Anionic Catalysts, Using
Gas-Phase Energies with ZPE Correction, Gas-Phase Free Energies, and Gas-Phase Energies with ZPE and Polarizable Continuum
Solvation Correction

energy? free energy energy in solvent?
AGP=36.5 AGP =359 AGP =413
neutral anionic neutral anionic neutral anionic
MARI ¢ —74.9 —59.5 —40.5 —33.5 —43.4 —57.0
HETS TSHO* 34.9 22.9 53.7 46.2 351 31.4
TSgifred —2.2 —-13.8 19.6 12.7 —-2.9 =75
OE'’ 73.3 45.9 60.2 46.2 40.6 49.5
relative TOF 1 6.7 101 1 1.2x 10° 1 1.2x 104

aEnergy with ZPE correctior?. The quantity refers to the net process, H8 Ph—Cl — Ph—SH + CI-.

Scheme 3 . Cross-Coupling of Carboxylic Anhydride with Table 3. Key Free Energies (in dimensionless units) at 298 K,
Arylboronic Acid, Studied in Ref 3 Reaction Energy, Energetic Span, and the TOF Relative to the
Pd(PMes), Neutral Mechanism
@ PhI:I(OHt)zOIAC AG=258 neutral anionic
o« eutral N
JI\ + “_Anionic_* +B(OH).0Ac intermediate —-8.4 —-25.5
HO -8 “OH Pd(PMe3)20Ac transition state 28.2 114
OE' 36.7 36.8
relative TOF 1 0.9

2. It is seen that, on the free energy scale, the anionic catalyst
is still the better option, having a relative TOF of 1210° -
compared with the neutral cycle. However, adding solvation Scheme 4 . Heck Reaction with Ni and Pd Complexes

energy correction (using a continuum THF model in Jaguar Pd(PH;),

4.2'9) to the gas phasé ZPE correction inverts the order. Now R-X + CH,=CH, { > RCH=CH, + HX
the TOF of the cycle for the neutral catalyst is much higher Ni(PH;),

than that of the anionic catalyst. The major effect is the relative o

change in the energy of the MARI that becomes deeper in A %’:g.a?"'e .

. ; . ition Reductive
energy with solvation, thereby raising the energy span of the - ’,m\ Elimination
anionic cycle; this is the case despite of the energy lowering of o FERRAY ,m.‘
the HETS. This result is in discord with the experimental data 2 o S ,."
of Jutand and Amatore regarding the importance of the anionic W tleee” "2"7"
catalyst for a working cyclé®21 “._ \-18.4, e - 159

In light of these new results, the final judgment on the role bt ,"-11-2
of anionic additivé®2will have to be based on more complex P 4
QM or QM/MM calculations of the cycleincluding the so far oy Ni '-.‘
neglected counterion of the anionic addéj and possibly with 1629,
accurate free energy quantities. Nevertheless, this application Insoion
demonstrates the importance of considering the entire cycle and Intermediate -
not only selected states. Reaction Coordinate

Cross-Coupling of Carboxylic Anhydrides with Arylbo-
ronic Acids. Goossen et dstudied the cross-coupling reaction mechanism is 36.8, while for the neutral one it is 3&E (=
using two catalyst species, the neutral one, Pd@Mand the T — ). Consequently, both catalytic cycles have virtually the
anionic species, Pd(PMgOAc-, proposed by Jutand and same TOF.
Amatorel®2! with an arylboronic acid as nucleophile. The Comparison of the Heck Reaction with Pd and Ni
reaction mechanism was found to consist of three phases,Catalysts. Theoretical calculatiorfs of the Heck reaction
oxidative addition, transmetalation, and reductive elimination, catalyzed by two metal complexes of the divalent palladium(0)
as in the preceding cycle. Scheme 3 shows briefly the two and nickel(0) species revealed the same mechanism for both
alternative catalysts. Thus, the transmetalation step made useatalysts. Since nickel is less electronegative than palladium,
of acetate for both catalyst species; for the anionic catalyst, theits oxidative addition step has a low-energy transition state
acetate was part of the catalyst complex itself, while for the leading to very stable intermediates. The oxidative addition is
neutral catalyst the acetate was part of the phenylboronic acidmore difficult in the case of the palladium catalyst, and hence,
and acted as a cocatalyst. the energy profile exhibits high transition states and intermedi-

Table 3 summarizes the critical parameters and TOFs of theates. The two energy profiles are shown schematically in
two Cyc|es_ In both mechanisms, the states that maximize theSCheme 4, along with indication of the critical states in the
energetic span are the same. The MARI is the starting point for reaction.
the transmetalation (with free energy-625.5 (dimensionless) At a superficial glance, we cannot favor one of the cycles in
for the anionic cycle—8.4 for the neutral one at 298 K; in  Scheme 4, and this is where the calculation of the corrected
both cases this is relative to the reactant species). The mostenergetic span is handy. Again, for both catalysts the most
important transition state is the one involving the dissociation influential intermediate is the insertion intermediate. For the
of the PR-B bond. The resulting energetic span for the anionic Pd catalyst, the transition state for oxidative addition is the one
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Table 4. Key Free Energies and Energetic Span (Dimensionless) systems when small changes are made in the catalyst, e.g., as
fzogsth}f Heck Reaction Catalyzed by Pd(0) and Ni(0) Complexes at the previously described adjustment of the bite angle of a chelate
. - liganc®25or small gradual decreases in ligand electronegativity,
: etc. In the discussion below, we show the simple physical
AG=159 E Xror E Xror mechanism behind the volcano shape of the TOF. In so doing,
intermediate inserton ~ —-62.9 1.0 -184 1.0 we identify also the features that maximize the TOF in a series
transition state  oxidaddn 4.7 05 449 10 ofcycles. This is done using the kinetic model developed above
red elimin —-11.2 0.5 .
SE’ 51.7 47.4 and the well-known BransteeBell—Evans-Polanyi (BEP)
relative TOR 1 147 principle?
Consider the BEP linear relatibhfor an elementary step,
aThe TOF values are relative to the nickel mechanism as a standard.
E,=aAE+p (40)

Scheme 5 . An Example of Sabatier’'s Volcano Curve for Formic

Acid Decomposition as a Function of Different Metallic Catalysts? . . . .
whereAE is the reaction energy for this elementary stépits

activation energyp a constant, and. a coefficient between 0

and 1. A generalized BEP relation that considers the transition-
state and the intermediate energies in a cycle will give us the
same linear relationship, which in our energy notations becomes

Au AgPd Ru W the following:

aFrom ref 5. T, = alj +58 (41)

TOF

with the highest degree of TOF control. The corresponding dataWherei andj can be the states with highe$tor, (see Figure

for TOF calculations are given in Table 4. . . : . :
) . . . . 7). In this case, a change in the intermediate will also alter the
Using the data in Table 4, with due consideration of A@ ) g

quantity, the resulting energetic span for the Pd(0) catalyst is A WAL
given by 3 —_— Jp— I
2 ! ; \ OE;

OE"(PA)= Ty agda— linsert — AG=47.4 (37) u I “'."

. ) L iy _,f S e [N
For the Ni(0) catalyst, the reductive elimination transition state o G Y ; o
is as important to the kinetics as the one for oxidative addition. '.I .:' - !
Therefore, we have Ay In
oE ’(Ni) = Tox add ™ Iinsert —AG= Tred elim ™ Iinsert.: sl.7 h{me)

(38) Reaction Coordinate

Figure 7. Elevation of the reaction profile by a change of a catalyst that
maintains the mechanism of all elementary steps and responds to a BEP

and the corresponding TOF is half the exponential of the relation

energetic span because of the two influential transition states.
Thus, the relative TOF of the two cycles is given then by eq transition states, and thé&or; must display this effect. This is
39: simply the celebrated Hammond postulZte.

For a catalyst that does not alter the nature of the elementary
steps of the mechanism, what matter are energy changes in the
energy profile. The two quantities that remain invariant for any
catalyst in the series are the startirlg) @nd final (n) ones,

We emphasize that this difference pertains to the energy datashown in Figure 7. The reactant stalg,is always set to zero
reported as such in the original literature and not to accurate as a reference, while the product energy depends on the net
free energies in a solvent. With this qualification in mind, we reaction and is unaffected by the catalystTifand|; are the
might say that the result in eq 39 favors the palladium catalyst states that determine the energetic span (lower profile in Figure
over the nickel one. 7),then we can write the following expression for the energy

Sabatier’s Volcano Curve in Heterogeneous Catalysighe span:
volcano curve, first discovered by Sabatier for heterogeneous
catalytic systems (for which he received the Nobel Prize in
1912), describes the shape of the TOF function when changing
the transition metal catalyst surface across the periodic table.
Thus, moving from left to right in the periodic table, it was TOE. = ¢ %t — gilt-0)5 (43)
noted that the change in the transition metal surface led to an 1
increase of the TOF up t9 a maximum, after which thg TOF_ Since changes in thi state will induce changes in the other
decreased sharply, forming the volcano shape depicted Nsteps (except for statésand|y), we must consider thiror,

Scheme 3:8 Another way of looking at Scheme 5 is that the based on the BEP relationship. So, fixing the stageand |y,
volcano shape describes the variation of TOF as a function of |, get

the heat of formation of the intermediate compodnthis
volcano shape of TOF is expected also for homogeneous (28) Hammond, G. SJ. Am. Chem. Sod.955 77, 334.

TOF,y o 0Ees
TOFy, o05e0n (39)

OB =Ti— =@+ -=lla-1+5 (42)

The TOF of the cycle will then be
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i li(1—0)—p = 11— " L4
XTOF’|j||0'|N — li(l-o)+p e aI_J =1—0o (44) 5 --_T-------OF- ------- / I'ol-
X 0+ L o5
As such, a change of a catalyst that raises the intermediate N
energy (j) and obeys the BEP relation will change the TOF - 0
exponentially, giving rise to the left hillside of the volcano in li<ly L=l 1>l

Figure 8. If the energy of this MARI continues to grow, at a
certain point the role of the MARI will pass on to the starting
statelp (upper curve of Figure 7). At this point, the energetic

span will be given by are calculated in quantum chemical studies. A recent demonstra-
SE.=T — | (45a) Fion of the utility of coupling I_(ine_tic mode_ls to QM calcu_lations
20 is the treatment of polymerization by Michalak and Ziegfer.
The model presented here allows a straightforward assessment
of computed catalytic cycles and testing of alternative hypoth-
eses. The efficiency of a catalytic cycle under steady-state

Figure 8. TOF andXror, for a BEP relation witho. = 0.8. The volcano
shape appears as the lower energy intermediate goeslftont.

However, sinceT; is still linked to|; by the BEP relationship,
we may re-expres8E; as follows:

O0E, = Lo+ B—1, (45hb) conditions is determined by an energy span quaniiy which
depends on the location of the highest energy transition state
Therefore, we obtain the following expression for TOF, (HETS) and most stable intermediate (MARI) with respect to
reactants and products. If the MARI precedes the HBESs
TOF, = g %F = g lixFtlo (46) simply the energy difference between the two species in the
cycle?! If the HETS appears before the MARI, th¥E is
and for the TOF control, corrected by subtracting the reaction enefg@. The smaller

the energetic span, the higher the tureo frequency of the
cycle(eq 34). The application of this simple idea to the catalytic
cycles of the cross-couplifg?! and HecR reactions and to
Sabatier’s volcanoshows that this model is useful for a critical
assessment of the respective cycles and experimental findings.
Further applications, which include free energies and proper
solvation treatments, will be needed to appreciate its full
potential and predictive ability.

XTOF,Ijllo,IN =~ (47)

As shown from eq 44 vs eq 47, the degree of TOF control
changes sign whéhl; = lo, and therefore the TOF will exhibit
a maximum at this point (Figure 8) and a fall-down beyond it,
as shown in Figure 8. This will result in a semblance to
Sabatier’s volcano shape. Having a maximum in the TOF
function suggests that the best catalyst in a family of catalysts
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